Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Diagnostics (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473036

RESUMO

Photodynamic therapy (PDT) is increasingly used in modern medicine. It has found application in the treatment of breast cancer. The most common cancer among women is breast cancer. We collected cancer cells from the breast from the material received after surgery. We focused on tumors that were larger than 10 mm in size. Breast cancer tissues for this quantitative non-contrast magnetic resonance imaging (MRI) study could be seen macroscopically. The current study aimed to present findings on quantitative non-contrast MRI of breast cancer cells post-PDT through the evaluation of relaxation times. The aim of this work was to use and optimize a 1.5 T MRI system. MRI tests were performed using a clinical scanner, namely the OPTIMA MR360 manufactured by General Electric HealthCare. The work included analysis of T1 and T2 relaxation times. This analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MRI images saved in the DICOM3.0 standard. T1 and T2 measurements were subjected to the Shapiro-Wilk test, which showed that both samples belonged to a normal distribution, so a parametric t-test for dependent samples was used to test for between-sample variability. The study included 30 sections tested in 2 stages, with consistent technical parameters. For T1 measurements, 12 scans were performed with varying repetition times (TR) and a constant echo time (TE) of 3 ms. For T2 measurements, 12 scans were performed with a fixed repetition time of 10,000 ms and varying echo times. After treating samples with PpIX disodium salt and bubbling with pure oxygen, PDT irradiation was applied. The cell relaxation time after therapy was significantly shorter than the cell relaxation time before PDT. The cells were exposed to PpIX disodium salt as the administered pharmacological substance. The study showed that the therapy significantly affected tumor cells, which was confirmed by a significant reduction in tumor cell relaxation time on the MRI results.

2.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474220

RESUMO

Cardiovascular diseases are the third most common cause of death in the world. The most common are heart attacks and stroke. Cardiovascular diseases are a global problem monitored by many centers, including the World Health Organization (WHO). Atherosclerosis is one aspect that significantly influences the development and management of cardiovascular diseases. Photodynamic therapy (PDT) is one of the therapeutic methods used for various types of inflammatory, cancerous and non-cancer diseases. Currently, it is not practiced very often in the field of cardiology. It is most often practiced and tested experimentally under in vitro experimental conditions. In clinical practice, the use of PDT is still rare. The aim of this review was to characterize the effectiveness of PDT in the treatment of cardiovascular diseases. Additionally, the most frequently used photosensitizers in cardiology are summarized.


Assuntos
Doenças Cardiovasculares , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Doenças Cardiovasculares/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474256

RESUMO

The aim of this work was to use and optimize a 1.5 Tesla magnetic resonance imaging (MRI) system for three-dimensional (3D) images of small samples obtained from breast cell cultures in vitro. The basis of this study was to design MRI equipment to enable imaging of MCF-7 breast cancer cell cultures (about 1 million cells) in 1.5 and 2 mL glass tubes and/or bioreactors with an external diameter of less than 20 mm. Additionally, the development of software to calculate longitudinal and transverse relaxation times is described. Imaging tests were performed using a clinical MRI scanner OPTIMA 360 manufactured by GEMS. Due to the size of the tested objects, it was necessary to design additional receiving circuits allowing for the study of MCF-7 cell cultures placed in glass bioreactors. The examined sample's volume did not exceed 2.0 mL nor did the number of cells exceed 1 million. This work also included a modification of the sequence to allow for the analysis of T1 and T2 relaxation times. The analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MR images saved in the DICOM3.0 standard which ensures that the data analyzed are reliable and unchangeable in an unintentional manner that could affect the measurement results. The possibility of using 1.5 T MRI systems for cell culture research providing quantitative information from in vitro studies was realized. The scanning resolution for FOV = 5 cm and the matrix was achieved at a level of resolution of less than 0.1 mm/pixel. Receiving elements were built allowing for the acquisition of data for MRI image reconstruction confirmed by images of a phantom with a known structure and geometry. Magnetic resonance sequences were modified for the saturation recovery (SR) method, the purpose of which was to determine relaxation times. An application in MATLAB was developed that allows for the analysis of T1 and T2 relaxation times. The relaxation times of cell cultures were determined over a 6-week period. In the first week, the T1 time value was 1100 ± 40 ms, which decreased to 673 ± 59 ms by the sixth week. For T2, the results were 171 ± 10 ms and 128 ± 12 ms, respectively.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Tamanho da Amostra , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Técnicas de Cultura de Células
4.
Dent J (Basel) ; 12(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38534272

RESUMO

BACKGROUND: Candida albicans and similar species are significant pathogens in immunocompromised and hospitalized individuals, known for mucosal colonization and bloodstream/organ invasion. Many pathogenic fungi, including these species, exhibit autofluorescence (R/OF) under specific light conditions, a feature crucial for their detection. AIM: We investigated the use of a 405 nm diode laser for the direct observation of red/orange autofluorescence of Candida spp., common in the oral cavity, exploring its potential in health screenings. METHODS: This study utilized cultures of Candida spp. on Sabouraud dextrose agar with Qdot 655 and 685 for fluorescence benchmarking, illuminated using a 405 nm diode laser (continuous wave, power 250 mW, 0.0425 J/cm² fluence, 0.0014 W/cm² power density). Images were captured using a yellow-filter camera at set intervals (48 to 144 h). Visual and computational analyses evaluated the R/OF in terms of presence, intensity, coloration, and intra-colony variation. RESULTS: Most Candida strains displayed red/orange autofluorescence at all observation times, characterized by varied coloration and intra-colony distribution. Initially, there was an increase in R/OF intensity, which then stabilized in the later stages of observation. CONCLUSIONS: The majority of the Candida strains tested are capable of emitting R/OF under 405 nm laser light. This finding opens up new possibilities for integrating R/OF detection into routine dental screenings for Candida spp.

5.
Cancers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339396

RESUMO

Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of various diseases. This non-invasive approach utilizes photosensitizing agents and light to selectively target and destroy abnormal cells, providing a valuable alternative to traditional treatments. Research studies have explored the application of PDT in different areas of the head. Research is focusing on a growing number of new developments and treatments for cancer. One of these methods is PDT. Photodynamic therapy is now a revolutionary, progressive method of cancer therapy. A very important feature of PDT is that cells cannot become immune to singlet oxygen. With this therapy, patients can avoid lengthy and costly surgeries. PDT therapy is referred to as a safe and highly selective therapy. These studies collectively highlight the potential of PDT as a valuable therapeutic option in treating the head area. As research in this field progresses, PDT may become increasingly integrated into the clinical management of these conditions, offering a balance between effectiveness and minimal invasiveness.

6.
Int J Mol Sci ; 25(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38338997

RESUMO

The aim of the study was to investigate the effect of Trastuzumab on the MCF-7 and CRL-2314 breast cancer cell lines. Additionally, an attempt was made to optimize magnetic resonance spectroscopy (MRS) for cell culture studies, with particular emphasis on the impact of treatment with Trastuzumab. The research materials included MCF-7 and CRL-2314 breast cancer cell lines. The study examined the response of these cell lines to treatment with Trastuzumab. The clinical magnetic resonance imaging (MRI) system, OPTIMA MR360 manufactured by GEMS, with a magnetic field induction of 1.5 T, was used. Due to the nature of the tested objects, their size and shape, it was necessary to design and manufacture additional receiving coils. They were used to image the tested cell cultures and record the spectroscopic signal. The spectra obtained by MRS were confirmed by NMR using a 300 MHz NMR Fourier 300 with the TopSpin 3.1 system from Bruker. The designed receiving coils allowed for conducting experiments with the cell lines in a satisfactory manner. These tests would not be possible using factory-delivered coils due to their parameters and the size of the test objects, whose volume did not exceed 1 mL. MRS studies revealed an increase in the metabolite at 1.9 ppm, which indicates the induction of histone acetylation. Changes in histone acetylation play a very important role in both cell development and differentiation processes. The use of Trastuzumab therapy in breast cancer cells increases the levels of acetylated histones. MRS studies and spectra obtained from the 300 MHz NMR system are consistent with the specificity inherent in both systems.


Assuntos
Neoplasias da Mama , Histonas , Humanos , Feminino , Trastuzumab/farmacologia , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/tratamento farmacológico
7.
Biomedicines ; 12(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397977

RESUMO

Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.

8.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069213

RESUMO

In this review, we delve into the realm of photodynamic therapy (PDT), an established method for combating cancer. The foundation of PDT lies in the activation of a photosensitizing agent using specific wavelengths of light, resulting in the generation of reactive oxygen species (ROS), notably singlet oxygen (1O2). We explore PDT's intricacies, emphasizing its precise targeting of cancer cells while sparing healthy tissue. We examine the pivotal role of singlet oxygen in initiating apoptosis and other cell death pathways, highlighting its potential for minimally invasive cancer treatment. Additionally, we delve into the complex interplay of cellular components, including catalase and NOX1, in defending cancer cells against PDT-induced oxidative and nitrative stress. We unveil an intriguing auto-amplifying mechanism involving secondary singlet oxygen production and catalase inactivation, offering promising avenues for enhancing PDT's effectiveness. In conclusion, our review unravels PDT's inner workings and underscores the importance of selective illumination and photosensitizer properties for achieving precision in cancer therapy. The exploration of cellular responses and interactions reveals opportunities for refining and optimizing PDT, which holds significant potential in the ongoing fight against cancer.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Oxigênio Singlete , Catalase , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico
9.
Life (Basel) ; 13(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37895400

RESUMO

One of the inflammatory bowel diseases is Crohn's disease. Although this term has been used in the medical community since 1932, a significant increase in the number of publications occurs at the end of the 20th century and the beginning of the 21st century. Crohn's disease is a disease that cannot be fully cured. In many cases, it is chronic, i.e., recurrent. All preventive and therapeutic measures taken by doctors are aimed at inhibiting the development of the disease and minimizing the occurrence of any potential "side effects" resulting from the developing disease. One of the diagnostic methods is the qualitative and quantitative determination of metalloproteinases in inflammatory tissues and in the blood. The aim of the study was the quantitative and qualitative determination of metalloproteinases in inflammatory bowel tissues in patients diagnosed with Crohn's disease. The in vitro study was performed on surgical tissues from patients diagnosed with Crohn's disease. The results show that in inflammatory tissues the concentration of metalloproteinases -3, -7, -8, -9 was higher compared to tissues taken from the resection margin without signs of inflammation, defined as healthy. The experiment confirmed that the biochemical test, which is the determination of metalloproteinases in tissues, is a useful diagnostic tool to differentiate inflammatory from non-inflammatory tissues.

10.
Life (Basel) ; 13(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895443

RESUMO

Crohn's disease is a chronic inflammatory bowel disease that affects the ileum and/or large intestine. At the same time, it can also affect any other part of the human body, i.e., from the mouth to the anus. In Crohn's disease, the physiology and functioning of the epithelial barrier are inhibited due to the correlation of various factors, such as the environment, genetic susceptibility or intestinal microbiota. The symptoms are very troublesome and cause a significant reduction in quality of life, sometimes occurring with paralyzing permanent damage to the digestive tract, requiring enteral or parenteral nutrition throughout life. In order to make a proper and accurate diagnosis, an appropriately selected diagnostic path in a given clinical entity is necessary. Standard diagnostic methods are: laboratory examination, histopathological examination, endoscopic examination, X-ray, computed tomography, ultrasound examination and magnetic resonance imaging. Medical biology and the analysis of metalloproteinases have also proved helpful in diagnosing changes occurring as a result of Crohn's disease. Here we provide a thorough review of the latest reports on Crohn's disease and its genetic conditions, symptoms, morphology, diagnosis (including the analysis of Crohn's disease biomarkers, i.e., metalloproteinases) and treatment.

11.
Front Biosci (Landmark Ed) ; 28(7): 144, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37525921

RESUMO

In this article, we reviewed the use of photodynamic therapy (PDT) for breast cancer (BC) in animal models. These in vivo models imitate the cancer disease progression, aid diagnosis, as well as create opportunities to assess treatment during the approval process for the new drug. BC ranks first among women's cancers. Nowadays, there are many diagnostic methods and therapy options for BC but the majority of them have severe side effects. This article discusses the advantages and some disadvantages of the use of small and large animals used for BC models. A literature review showed that the majority of studies have used large animal models, and recently there has been more interest in developing BC in small animal models. BC cell lines such as MCF-7, BT-474, MDA-MB-231, and 4T1 are commercially available for two-dimensional and three-dimensional in vitro cell cultures and subcutaneous models. The purpose of this article is to discuss the performance of PDT in animal models and its further clinical implications. PDT is known to be a non-invasive therapy, which uses monochromatic light and energy to excite photosensitizers (PSs) for the generation of reactive oxygen species as the required factors. Herein, we discuss the use of five photosensitizers in BC models such as chlorin e6 (Ce6), methylene blue, indocyanine green, 5-aminolevulinic acid, and meta-tetra(hydroxyphenyl)chlorin. The database PubMed and Scopus were searched for keywords: 'photodynamic therapy', 'breast cancer', 'animal model', 'clinical studies', and 'photosensitizer(s)'. The PDT search results in animal experiments and its effect on a living organism indicate the possibility of its application in clinical trials on women with local and disseminated BC. The availability and accessibility of small and large BC animal models enable the progress and trial of cancer drugs for innovative technologies and new diagnostics and treatments.

12.
Pharmaceutics ; 15(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37111765

RESUMO

Squamous cell carcinoma is the most common cancer of the head and neck region. In addition to the classic surgical treatment method, alternative therapy methods are sought. One such method is photodynamic therapy (PDT). In addition to the direct cytotoxic effect, it is essential to determine the effect of PDT on persistent tumor cells. The study used the SCC-25 oral squamous cell carcinoma (OSCC) cell line and the HGF-1 healthy gingival fibroblast line. A compound of natural origin-hypericin (HY)-was used as a photosensitizer (PS) at concentrations of 0-1 µM. After two hours of incubation with the PS, the cells were irradiated with light doses of 0-20 J/cm2. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) test was used to determine sublethal doses of PDT. Cell supernatants subjected to sublethal PDT were assessed for soluble tumor necrosis alpha receptors (sTNF-R1, sTNF-R2). The phototoxic effect was observed starting with a light dose of 5 J/cm2 and amplified with the increase in HY concentration and light dose. A statistically significant increase in sTNF-R1 secretion by SCC-25 cells was demonstrated after the PDT with 0.5 µM HY and irradiation with 2 J/cm2 (sTNF-R1 concentration = 189.19 pg/mL ± 2.60) compared to the control without HY and irradiated with the same dose of light (sTNF-R1 concentration = 108.94 pg/mL ± 0.99). The baseline production of sTNF-R1 was lower for HGF-1 than for SCC-25, and secretion was not affected by the PDT. The PDT had no effect on the sTNF-R2 production in the SCC-25 or HGF-1 lines.

13.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902163

RESUMO

Noninvasive measurements of 1H Magnetic Resonance Imaging (MR) relaxation times in a three-dimensional (3D) cell culture construct are presented. Trastuzumab was used as a pharmacological component delivered to the cells in vitro. The purpose of this study was to evaluate the Trastuzumab delivery by relaxation times in 3D cell cultures. The bioreactor has been designed and used for 3D cell cultures. Four bioreactors were prepared, two with normal cells and two with breast cancer cells. The relaxation times of HTB-125 and CRL 2314 cell cultures were determined. An immunohistochemistry (IHC) test was performed before MRI measurements to confirm the amount of HER2 protein in the CRL-2314 cancer cells. The results showed that the relaxation time of CRL2314 cells is lower than normal HTB-125 cells in both cases, before and after treatment. An analysis of the results showed that 3D culture studies have potential in evaluating treatment efficacy using relaxation times measurements with a field of 1.5 Tesla. The use 1H MRI relaxation times allows for the visualization of cell viability in response to treatment.


Assuntos
Antineoplásicos Imunológicos , Imageamento por Ressonância Magnética , Neoplasias , Trastuzumab , Imageamento por Ressonância Magnética/métodos , Neoplasias/terapia , Trastuzumab/farmacocinética , Trastuzumab/uso terapêutico , Técnicas de Cultura de Células em Três Dimensões , Fatores de Tempo , Antineoplásicos Imunológicos/farmacocinética , Antineoplásicos Imunológicos/uso terapêutico
14.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675075

RESUMO

Artificial intelligence has been entering medical research. Today, manufacturers of diagnostic instruments are including algorithms based on neural networks. Neural networks are quickly entering all branches of medical research and beyond. Analyzing the PubMed database from the last 5 years (2017 to 2021), we see that the number of responses to the query "neural network in medicine" exceeds 10,500 papers. Deep learning algorithms are of particular importance in oncology. This paper presents the use of neural networks to analyze the magnetic resonance imaging (MRI) images used to determine MRI relaxometry of the samples. Relaxometry is becoming an increasingly common tool in diagnostics. The aim of this work was to optimize the processing time of DICOM images by using a neural network implemented in the MATLAB package by The MathWorks with the patternnet function. The application of a neural network helps to eliminate spaces in which there are no objects with characteristics matching the phenomenon of longitudinal or transverse MRI relaxation. The result of this work is the elimination of aerated spaces in MRI images. The whole algorithm was implemented as an application in the MATLAB package.


Assuntos
Inteligência Artificial , Neoplasias , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Algoritmos , Neoplasias/diagnóstico por imagem , Técnicas de Cultura de Células
15.
Int J Mol Sci ; 25(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203373

RESUMO

Inflammatory bowel disease (IBD) is a collective term for two diseases: ulcerative colitis (UC) and Crohn's disease (CD). There are many factors, e.g., genetic, environmental and immunological, that increase the likelihood of these diseases. Indicators of IBDs include extracellular matrix metalloproteinases (MMPs). The aim of this review is to present data on the role of selected cytokines and metalloproteinases in IBD. In recent years, more and more transcriptomic studies are emerging. These studies are improving the characterization of the cytokine microenvironment inside inflamed tissue. It is observed that the levels of several cytokines are consistently increased in inflamed tissue in IBD, both in UC and CD. This review shows that MMPs play a major role in the pathology of inflammatory processes, cancer, and IBD. IBD-associated inflammation is associated with increased expression of MMPs and reduced ability of tissue inhibitors of metalloproteinases (TIMPs) to inhibit their action. In IBD patients in tissues that are inflamed, MMPs are produced in excess and TIMP activity is not sufficient to block MMPs. This review is based on our personal selection of the literature that was retrieved by a selective search in PubMed using the terms "Inflammatory bowel disease" and "pathogenesis of Inflammatory bowel diseases" that includes systematic reviews, meta-analyses, and clinical trials. The involvement of the immune system in the pathophysiology of IBD is reviewed in terms of the role of the cytokines and metalloproteinases involved.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/genética , Citocinas , Metaloproteinases da Matriz/genética
16.
Cancers (Basel) ; 16(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201494

RESUMO

Gastrointestinal cancers are a specific group of oncological diseases in which the location and nature of growth are of key importance for clinical symptoms and prognosis. At the same time, as research shows, they pose a serious threat to a patient's life, especially at an advanced stage of development. The type of therapy used depends on the anatomical location of the cancer, its type, and the degree of progression. One of the modern forms of therapy used to treat gastrointestinal cancers is PDT, which has been approved for the treatment of esophageal cancer in the United States. Despite the increasingly rapid clinical use of this treatment method, the exact immunological mechanisms it induces in cancer cells has not yet been fully elucidated. This article presents a review of the current understanding of the mode of action of photodynamic therapy on cells of various gastrointestinal cancers with an emphasis on colorectal cancer. The types of cell death induced by PDT include apoptosis, necrosis, and pyroptosis. Anticancer effects are also a result of the destruction of tumor vasculature and activation of the immune system. Many reports exist that concern the mechanism of apoptosis induction, of which the mitochondrial pathway is most often emphasized. Photodynamic therapy may also have a beneficial effect on such aspects of cancer as the ability to develop metastases or contribute to reducing resistance to known pharmacological agents.

17.
Pharmaceutics ; 16(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38258051

RESUMO

In 2020, there were 377,713 new oral and lip cancer diagnoses and 177,757 deaths. Oral cancer is a malignancy of the head and neck region, and 90% of cases are squamous cell carcinomas (OSCCs). One of the alternative methods of treating pre-cancerous lesions and oral cancer is photodynamic therapy (PDT). In addition to the cytotoxic effect, an important mechanism of PDT action is the immunomodulatory effect. This study used the OSCC (SCC-25) cell line and the healthy gingival fibroblast (HGF-1) line. A compound of natural origin-hypericin (HY)-was used as the photosensitizer (PS). The HY concentrations of 0-1 µM were used. After two hours of incubation with PS, the cells were irradiated with light doses of 0-20 J/cm2. The MTT test determined sublethal doses of PDT. Cell supernatants subjected to sublethal PDT were assessed for interleukin 6 (IL-6), soluble IL-6 receptor alpha (sIL-6Ralfa), sIL-6Rbeta, IL-8, IL-10, IL-11 IL-20, IL-32, and Pentraxin-3 using the Bio-Plex ProTM Assay. The phototoxic effect was observed starting with a light dose of 5 J/cm2 and amplified with increasing HY concentration and a light dose. HY-PDT affected the SCC-25 cell secretion of sIL-6Rbeta, IL-20, and Pentraxin-3. HY alone increased IL-8 secretion. In the case of HGF-1, the effect of HY-PDT on the secretion of IL-8 and IL-32 was found.

18.
Front Oncol ; 12: 1024576, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465381

RESUMO

The poor prognosis of patients with esophageal cancer leads to the constant search for new ways of treatment of this disease. One of the methods used in high-grade dysplasia, superficial invasive carcinoma, and sometimes palliative care is photodynamic therapy (PDT). This method has come a long way from the first experimental studies to registration in the treatment of esophageal cancer and is constantly being improved and refined. This review describes esophageal cancer, current treatment methods, the introduction to PDT, the photosensitizers (PSs) used in esophageal carcinoma PDT, PDT in squamous cell carcinoma (SCC) of the esophagus, and PDT in invasive adenocarcinoma of the esophagus. For this review, research and review articles from PubMed and Web of Science databases were used. The keywords used were "photodynamic therapy in esophageal cancer" in the years 2000-2020. The total number of papers returned was 1,000. After the review was divided into topic blocks and the searched publications were analyzed, 117 articles were selected.

19.
Molecules ; 27(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36296440

RESUMO

The treatment of neoplastic disease of the brain is still a challenge for modern medicine. Therefore, advanced methodologies are needed that can rationally and successfully contribute to the early diagnosis of primary and metastatic tumors growing within the brain. Photodynamic therapy (PDT) seems to be a valuable method of treatment for precancerous and cancerous lesions including brain tumors. The main advantage of PDT is its high efficiency, minimal invasiveness and no serious side effects, compared with chemotherapy and radiotherapy. This review was conducted through a comprehensive search of articles, scientific information databases and the websites of organizations dealing with cancer treatment. Key points from clinical trials conducted by other researchers are also discussed. The common databases such as PubMed, Google Scholar, EBSCO, Scopus, and Elsevier were used. Articles in the English language of reliable credibility were mainly analyzed. The type of publications considered included clinical and preclinical studies, systematic reviews, and case reports. Based on these collected materials, we see that scientists have already demonstrated the potential of PDT application in the field of brain tumors. Therefore, in this review, the treatment of neoplasm of the Central Nervous System (CNS) and the most common tumor, glioblastoma multiforme (GBM), have been explored. In addition, an overview of the general principles of PDT, as well as the mechanism of action of the therapy as a therapeutic platform for brain tumors, is described. The research was carried out in June 2022.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico
20.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235031

RESUMO

The continuous development of magnetic resonance imaging broadens the range of applications to newer areas. Using MRI, we can not only visualize, but also track pharmaceutical substances and labeled cells in both in vivo and in vitro tests. 1H is widely used in the MRI method, which is determined by its high content in the human body. The potential of the MRI method makes it an excellent tool for imaging the morphology of the examined objects, and also enables registration of changes at the level of metabolism. There are several reports in the scientific publications on the use of clinical MRI for in vitro tracking. The use of multinuclear MRI has great potential for scientific research and clinical studies. Tuning MRI scanners to the Larmor frequency of a given nucleus, allows imaging without tissue background. Heavy nuclei are components of both drugs and contrast agents and molecular complexes. The implementation of hyperpolarization techniques allows for better MRI sensitivity. The aim of this review is to present the use of multinuclear MRI for investigations in drug delivery.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética , Descoberta de Drogas , Humanos , Imageamento por Ressonância Magnética/métodos , Preparações Farmacêuticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...